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ABSTRACT 
 Many protein-protein docking algorithms generate 

numerous possible complex structures with only a few 
of them resembling the native structure. The major 
challenge is choosing the near-native structures from the 
generated set. Recently it has been observed that the 
density of conserved residue positions is higher at the 
interface regions of interacting protein surfaces, except 
for antibody-antigen complexes, where a very low 
number of conserved positions is observed at the 
interface regions. In the present study we have used this 
observation to identify putative interacting regions on 
the surface of interacting partners. We studied 59 protein 
complexes, used previously as a benchmark dataset for 
docking investigations. We computed conservation 
indices of residue positions on the surfaces of interacting 
proteins using available homologous sequences and used 
this information to filter out from 55% to 88% of 
generated docked models, retaining near-native 
structures for further evaluation. We used a reverse filter 
of conservation score to filter out the majority of non-
native antigen-antibody complex structures. For each 
docked model in the filtered subsets, we relaxed the 
conformation of the side chains by minimizing the 
energy with CHARMM. We then calculated the binding 
free energy using a generalized Born method and solvent 
accessible surface area calculations. Using the free 
energy along with conservation information and other 
descriptors used in the literature for ranking docking 
solutions, such as shape complementarity and pair-
potentials, we developed a global ranking procedure that 
significantly improves the docking results by giving top 
ranks to the near-native complex structures.  

 
1. Introduction 

Predicting the structure of protein-protein complexes 
using computational methods has progressed 
substantially (Cherfils et al. 1993; Janin 1995; Shoichet 
et al. 1996; Sternberg et al. 1998; Camacho et al. 2002; 
Halperin et al. 2002; Smith et al. 2002). Numerous 
docking algorithms have been developed based on shape 
complementarity search algorithms (Katchalski-Katzir et 
al. 1992), such as PUZZLE (Helmer-Citterich et al. 
1994), DOCK (Ewing et al. 2001), FTDock (Gabb et al. 
1997), DOT (Mandell et al. 2001), and ZDOCK (Chen et 
al. 2003a). Since protein-protein docking is a hard 
problem to address due to the large number of degrees of 
freedom involved, some new techniques were introduced 
into docking procedures: HEX uses expansion of the 

molecular surface and electric field in spherical 
harmonics (Ritchie et al. 2000), BIGGER involves 
surface-implicit methods (Palma et al. 2000), AutoDock 
(Morris et al. 1998), DARWIN (Taylor et al. 2000; 
Gardiner et al. 2003), GAPDOCK (Gardiner et al. 2003) 
and GEMDOCK (Yang et al. 2004) employ genetic 
algorithms.  

In principle, calculation of the free energy change 
upon binding of two proteins should allow determination 
of the native structure. Although the enthalpic part of the 
free energy can be calculated with some accuracy, the 
entropic contributions are not easy to calculate without 
resorting to semiempirical and less accurate calculations. 
Furthermore, the computational load can become too 
large, especially for unbound docking (starting with 
individual protein crystal structures) which can 
potentially involve large protein conformation changes. 
Heuristic criteria, such as shape complementarity and 
coarse-grained residue potentials have been used with 
relative success. Still, the main bottleneck is choosing the 
near-native structures from large sets of generated 
complexes based on a standard global ranking procedure 
that will bring the near-native structures at the top of the 
generated structures dataset. 

Additional information has been used to better select 
near-native structures: HADDOCK (Dominguez et al. 
2003) and TreeDock (Fahmy et al. 2002) use information 
based on chemical shift perturbation data resulting from 
NMR titration experiments or mutagenesis, whereas 
ConsDock (Paul et al. 2002) uses consensus analysis for 
protein-ligand interactions. ClusPro (Comeau, et al. 
2004) has been implemented as a fully automated server. 

Recent studies of protein complexes have tested the 
importance of factors, such as interface propensity of 
residues, accessible surface area, planarity, protrusion, 
packing energies and binding areas (Jones et al. 1996; 
Tsai et al. 1997; Larsen et al. 1998; Lo Conte et al. 
1999). A test using averages of these factors as an 
indicator of protein binding sites showed about 66% 
success rate for 59 predictions (Jones et al. 1997).  

There have also been several reports investigating the 
role of conservation of interfacial residues in naturally 
occurring protein complexes, using evolutionary tracing 
of conserved residues in homologous sequences and 
structures (Lichtarge et al. 2002; Glaser et al. 2003). Our 
recent analysis of well-resolved protein complexes 
indicated that the density of highly conserved residues is 
higher in protein-protein interface positions compared to 
the other positions of the protein surfaces (Reddy et al. 
2004). We actually find that highly conserved positions 
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in surface regions of proteins involved in non-antibody-
antigen complexes tend to be in interacting patches. On 
the other hand, for antibody-antigen complexes, a very 
low number of conserved positions is observed in the 
interface regions. This information can potentially assist 
in the selection of near-native structures. However, to our 
knowledge, no attempts have been made to use residue 
conservation information to filter and rank the docking 
solutions of protein complexes.  

In this paper we describe our docking analysis and 
ranking of docked complex structures for 59 benchmark 
complexes (Chen et al. 2003b). We have used FTDock 
(Gabb et al. 1997; Moont et al. 1999) to generate 10,000 
docked models  for each of the complexes. We have then 
used conserved residue position information as a filter to 
reduce the number of docked structures. Besides 
filtering, we use conservation information to rank the 
remaining docked structures. We evaluate these 
approaches and report on the results.  

In this paper we also report on our efforts to develop 
a global ranking scheme. For each docked model, we 
relax the conformation of the side chains by minimizing 
the energy with CHARMM and then calculate the 
binding free energy using a generalized Born method and 
the solvent accessible surface area. We finally develop a 
global ranking procedure so that the near-native 
structures rank at the top, using all available information 
from docking, free energy calculations and residue 
conservation information.  

 

2.  Methods 

In Figure 1, we present a diagram with the steps that 
constitute our method. Briefly, for any two protein 
molecules A and B, we generate 10,000 structures using 
FTDock (Gabb et al. 1997; Moont et al. 1999). FTDock 
also calculates a shape complementarity value and a pair-
potential value for these 10,000 model structures. We 
then calculate conservation indices for the surface 
positions of the proteins and also calculate the 
desolvation energy upon binding. Using these two 
properties, along with the shape complementarity and the 
pair potential we develop two filters to reduce the 
number of model structures to a number considerably 
lower than 10,000. We then use CHARMM to minimize 
the energy of the filtered structures and we calculate the 
free energy of binding. Finally, we use the ranks of the 
model structures for all the properties to generate a 
global ranking scheme, which improves our ability to 
pick near-native structures from the set of putative native 
structures. The methods are detailed as follows.  

2.1 Docking Calculations 

To generate model docked structures, we employed 
FTDock software package (Gabb et al. 1997; Moont et 
al. 1999); (http://www.bmm.icnet.uk/docking), which 
uses an efficient geometric recognition algorithm to 
identify molecular surface complementarity (Katchalski-

Katzir et al. 1992). This method is based on a purely 
geometric approach and takes advantage of techniques 
applied in the field of pattern recognition. The geometric 
recognition algorithms include a digital representation of 
the proteins by 3D discrete functions for surface and the 
interior, a correlation function calculation using Fourier 
transformation that assesses the degree of molecular 
surface overlap and penetration upon relative shifts of 
the molecules in 3D, and a scan of the relative 
orientations of the molecules in 3D. From FTdock 
calculation, we obtained shape complimentarity rank and 
pair-potential rank.  
 

2.2 Conservation of Residue Positions 

 In order to evaluate the extent of conservation of 
interacting positions on the surface of proteins we 
calculate conservation indices as follows:  

2.2.1 Homologous sequences 

The two protein sequences of each investigated 
complex were used to obtain their homologous sequences 

from SWALL, an annotated non-redundant protein 
sequence database (non-redundant swissprot + TrEMBL + 
TrEMBLnew), using FASTA3(www.ebi.ac.uk/fasta33/) 

Fig.1. Schematic representation of the procedure used
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sequence similarity search tool at the European 
Bioinformatics Institute. Homologous sequences with less 
than 30% gaps in the sequence and greater than 35% 
sequence identity to the parent sequence were used for 
analysis. If the evolutionary distance (described below) 
between any two sequences is less than 5% then we 
randomly removed one of the sequences from the 
homolog set. The remaining sequences were used for 
calculating the residue conservation index (described 
below). 

2.2.2 Evolutionary Distance 

Evolutionary distance among the sequences is 
calculated using the structure based amino acid 
substitution matrix (Gonnet et al. 1992). A similarity score 
Sii for sequence i is calculated by summing the identical 
substitution values of the residues a and b from the 
substitution matrix M(a,b). Similarly, score Sjj is 
calculated for sequence j. A similarity score Sij between 
the sequences i and j is calculated using substitution 
matrix values of corresponding aligned residues between 
the two sequences. An evolutionary distance (EDij) 
between the two sequences is calculated using 
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2.2.3 Conservation Index of Residue Position 

Evolutionary distances between the reference 
sequence and its homologues were used to calculate 
residue conservation index (CIl) for each position l using 
the amino acid substitution matrix, similar to the amino 
acid variability or conservation used by Valdar and 
Thornton (Valdar et al. 2001). Conservation Index (CIl) 
is a weighted sum of all pairwise similarities between all 
residues present at the position. The CIl value is 
calculated using equation (2) in a given alignment and 
takes a value in the range [0,1]. 
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where N is the number of homologous sequences in the 
alignment; si(l) and sj(l) are the amino acids at the 
alignment position l of sequences si and sj  respectively; 
ED(si) and ED(sj) are the average evolutionary distance 
of s(i) and s(j) from the remaining homologues.  
Mut(a,b) measures the similarity among the amino acids 
a and b as derived from amino acid substitution matrix 
M(a,b) and defined as: 

lowbaMbaM
lowbaMbaMbaMut
),(max),(

),(),(),(
−

−
=   (3) 

where a, b are the pairs of amino acids at a given 
alignment position l. M(a,b)low is the lowest value in the 
substitution matrix (-5 in the Gonnet matrix (Gonnet et 
al. 1992)) and M(a,b)max is the maximum value among 

all the possible substitution pairs in that position. Thus 
the Mut(a,b) takes a value in the range [0,1].  

Using PSA (Richmond et al. 1978; Sali et al. 1990), 
the solvent accessible surface area (SASA) of amino 
acids is calculated and used to identify surface residues 
and buried residues. We have then identified the top 8% 
and 17% percent of highly conserved residues, which 
have solvent accessibility greater than 25% of their total 
surface area.  
 For each complex, we add all conservation indices for 
each conserved position and use them to rank the 
complexes after filtering. In this case, two conservation 
ranks are obtained for group 1 and 2 respectively. We 
have observed (Reddy et al. 2004) that in the 
functionally interacting natural proteins, such as enzyme-
inhibitor complexes, the number of conserved positions 
is significantly higher in the interface region than in the 
rest of the protein surface. We thus assigned high ranks 
to complexes that had a large number of conserved 
positions at the interacting interface. In the case of 
antigen-antibody complexes the interacting regions are 
highly variable, and we gave higher ranks to the models 
with low numbers of conserved positions.  

2.3 Filters 

2.3.1 Conservation position filter 

Using homologous sequences we calculated 
conservation indices for each docked model using eq. 5. 
We have identified the top 8% (defined as group 1) and 
top 17% (defined as group 2) of highly conserved and 
well-exposed surface residues, in each polypeptide chain 
of the interacting complex.  

We counted the total number of group 1 and group 2 
positions in each modeled complex interface region. 
Using the group 1 and group 2 conservation positions as 
a filter, the total number of docked models are reduced. 
We selected only the models, which have at least 4 of 
group 1 positions or 6 of group 2 positions in the 
interface region of the enzyme-inhibitor model 
complexes. In the case of antigen-antibody complexes 
(for example 1JHL, 1KXQ, etc.) we have reversed the 
selection, limiting to 2 or less group 1 positions and 4 or 
less group 2 positions. We chose these cut-offs because 
we maximized the number of filtered docking solutions 
out of the 10,000 generated structures with the minimum 
number of near-native structures, as discussed in the 
Results section.     

2.3.2 Filter II 

A second filter was developed to lower the number of 
model structures further, using the average conservation 
rank along with other three ranks (shape-
complementarity, pair-potential, and desolvation energy 
(described in the next section)). If the rank of a complex 
is worse than 1,200 in any of the four rankings then the 
corresponding model is filtered out of the set of putative 
near native structures. Filter II is performed with only 
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three ranks if conservation information is not available as 
described in the results section. 

2.4 Side-chain Relaxation and Binding Free Energy 
Calculation 

Since the generated docked complexes have very 
strong side-chain overlap effects (atoms are very close to 
each other) we cannot calculate the binding energy 
correctly. Therefore, for each possible complex we 
perform energy minimization to reduce the side chain 
overlap effects. We employed CHARMM (Brooks et al. 
1983) molecular mechanics simulation package for 
energy minimization. With CHARMM we built in the 
missed atoms and all hydrogen atoms, fixed all backbone 
atoms and let the side-chain atoms relax to the minimum 
internal energy. Minimization was stopped if the energy 
did not change by more than 0.1% of the total energy of 
the complex. We should note here that this step is 
particularly computationally intensive. We thus worked 
on only the filtered structures after using the calculated 
conservation indices.  

Using the relaxed structures, we calculated the 
binding free energy. With some approximation, the free 
energy change can be divided into several terms (Dennis 
et al. 2002):  

bonding
i

ipolcoulomb

bondingcaves

G    G  G 

 ...   G  G  G G    

∆++∆+∆≈

+∆+∆+∆=∆

∑ iSASAσ  (4) 

These terms can be calculated separately: 
∆Gcoulomb and ∆Gpol can be calculated with the 
Generalized Born model with the Debye-Huckel  
approximation (Jayaram et al. 1998; Jayaram et al. 
1999).  

The desolvation energy term ΣσkSASAk can be 
calculated using the solvent accessible surface area for 
each residue (SASAk). The weights (σk) for each residue 
are taken from the work of Wang and co-workers (Wang 
et al. 1995). For the binding interaction, we use van der 
Waals interaction of the form. The potential parameter 
Aij and Bij for each atom pair are taken from CHARMM 
force field (Brooks et al. 1983) and AutoDock (Morris et 
al. 1998). From the value of free energy ∆G, we 
calculated a new rank for all filtered possible complexes.  

We also generated a rank based on only the 
desolvation term of the free energy, which is the only 
part of the free energy that can be calculated without 
relaxing the docked structures with minimization. 

 
2.5 Global Normalized Ranking 

 Our goal is to determine an optimal ranking 
procedure for identifying near-native structures. We 
could use a weighted sum of all the calculated 
descriptors (shape-complementarity, pair-potential, 
CHARMM energy, binding free energy, desolvation 
energy, conservation indices) to produce a global rank 
for the filtered subset of docked models, but values of 

these properties are not in the same units and the weights 
are not universal and hard to optimize. In our algorithm, 
instead of using the real value of each descriptor, we 
used the rank of each property since they have the same 
meaning and can be summed together.  

 For each individual descriptor, a normalized ranking 
method is applied. The rank was obtained by finding the 
maximum (Vmax) and minimum (Vmin) of their values 
and using the following equation.  

)(1_
minmax

N
VV
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ANINTRANKNORM i
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       (5) 

where Vi is the property value of complex i, and N is the 
total number of complexes after filtering. There may be 
some gaps if the difference between complexes is large, 
and several complexes can have the same rank number if 
their values are very close to one another. Nonetheless, 
this normalized method clearly reveals the difference 
among the complexes. Specifically for the binding free 
energy descriptor, we set the Vmax equal to zero. If for a 
complex the binding free energy is greater than zero, we 
assign the highest rank (in our case is 10,000) to that 
complex.  
The global score is simply obtained by average of all 
normalized ranks. 
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where M is the number of rank methods (descriptors), σi 
is the weights for descriptor i. Factor 100 is a scale factor 
which reduces the maximum of global_score to 100.  
 

3. Results and Discussion 

 In order to test the usefulness of our filter and ranking 
methods, we applied our algorithms to a benchmark of 
59 non-redundant protein complexes first used by Chen 
and co-workers (Chen et al. 2003b). This benchmark set 
includes 22 enzyme-inhibitor complexes, 19 antibody-
antigen complexes, 11 other complexes and 7 difficult 
test cases. This benchmark has been used by other groups 
to test their docking methods (Gray et al. 2003). 
Gottschalk and co-workers also used 21 complexes of 
this benchmark to test their scoring function of tightness 
of fit (Gottschalk et al. 2004). Since unbound-unbound 
docking (using single protein crystal structures as input) 
is more challenging than bound-bound docking (using 
the structures obtained from protein-complex crystals), 
we have carried out the unbound-unbound docking. 

 3.1 Analysis of FTDock performance   

      Using FTDock, we obtained 10,000 docked models 
and their ranks according to the correlation function of 
shape complementarity and pair potential (see section 
2.1). For these 10,000 models, we calculated the root 
mean square deviation (RMSD) of Cα atoms of each 
model structure from the native structure.  We then 
defined “hits” as the number of models having RMSD 
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less than 4.5Ǻ from the native structure. It can be seen 
from the results that there are 26 complexes with 
LRMSD less than 2.5Å, 15 complexes with LRMSD 
greater than 2.5Å but less than 3.5Å, and 8 complexes 
with LRMSD greater than 3.5Å. We are thus confident 
that FTDock can generate model complexes close to 
native structures. Nonetheless, for 5 complexes (1AVW, 
1BQL, 1EFU, 1FIN, 1GOT), FTDock failed to generate 
near-native structures, as the LRMSDs for these 
complexes are greater than 4.5Å.  

The rank based on shape complementarity predicts 
near native structures very poorly: the average rank of 
the LRMSD complexes is 4123, with only three of the 60 
complexes registering ranks better than 100. It is thus 
clear that shape complementarity is not by itself an 
adequate means for choosing near-native structures. 

The pair-potential rank did improve the ranks for 47 
complexes out of the 60 cases. From the results, it can be 
observed that there are only 12 complexes with pair-
potential ranking worse than shape complementarity. 
Nonetheless, ranks based on pair-potential do not have 
impressive predictive ability. For example, only 5 
complexes (1BRC, 1BRS, 1PPE, 2MTA, 2SIC) have 
ranks less than 20 for the LRMSD model and another 3 
complexes (1CGI, 1CHO, 2BTF) have ranks of LRMSD 
complexes less than 100. The rest have very high rank 
values. 

 3.2 Filters  performance   

First, we try to reduce the number of possible docked 
models from the generated 10,000, without filtering out 
the lower RMSD models. As described in section 2.3, we 
developed two filters based on residue conservation 
information. In the functionally interacting natural 
proteins, such as enzyme-inhibitor complexes, we gave 

higher ranks for the models with higher number of 
conserved positions in the interface region. In the case of 
antigen-antibody interactions the interacting regions are 

highly variable, and we gave higher ranks for the models 
with low numbers of conserved positions. With the 
conservation positions filter we reduced the number of 
complexes by about 55% to 88%.  

After performing the first filter, we used filter II to 
reduce the number of complexes to around 2,000 to 
4,000 models. The obtained results are shown in Table 1.   

In Table 1, there are 11 complexes (1A0O, 1AHW, 
1BRS, 1DFJ, 1FQ1, 1IGC, 1UDI, 1UGH, 1WQ1, 
2MTA, 4HTC) for which we couldn’t find sufficient     
homolog sequences from non-redundant databases to 
calculate the conserved residue position information. 
Therefore, only filter II is applied for these complexes.  

When we applied the filters to the model sets, some 
near-native structures are also filtered out (false 
negatives), besides non-native structures. Here we define 
the improvement factor (I_fact) as I_fact = (hits/models)f  
/ (hits/models)i, where hits/models is the ratio of the 
number of structures with RMSD<4.5 Ǻ from the native 
structure over the number of complex models, before 
((hits/models)i) and after ((hits/models)f) applying the 
filters. 

 The results are shown in Table 1 and Figure 2.  It is 
observed that there are 48 out of 60 complexes with 
I_fact greater than 1.0. Most of them (44) are greater 
than 2.0, which means the improvement is over 100%. 
For a few complexes applying the filter resulted in more 
than 400% improvement. 

There are 5 out of 60 complexes (1AVW, 1BQL, 
1EFU, 1FIN, 1GOT) with I_fact=1.0 for these 5 
complexes (see section 2.1), FTDock did not generate 
any near-native structure (with RMSD less than 4.5Å), 
i.e. no hits are found. When we examined these 
structures more carefully, we found that except for 1FIN 
in which the LRMSD structure was filtered out, the 
LRMSD structures are still in the filtered subset of these 

proteins. Moreover, the filters have reduced the number 
of model structures for these five complexes by a factor 

 
Figure 2. The improvement after filtering. The results are: (1) 48 out of 60 complexes have I_fact>1; (2) there are 5 complexes (1AVW, 
1BQL, 1EFU, 1FIN, 1GOT) with I_fact=1 because FTDock did not generate hits to begin with; (3) There are 7 complexes for which our 
filters worsen the results (1FSS, 1IGC, 1MAH, 1EO8, 1L0Y, 1NCA, 1QFU) with 1>I_fact>=0 after filtering 
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of 2.5 to 4. This shows that the filters help with even 
these 5 complexes.  
        Our filters failed for 7 complexes: there are 3 
complexes (1FSS, 1IGC, 1MAH) for which I_fact is less 
than 1.0 (Figure 2 and Table 1). For these structures 
proportionately more near-native model structures are 
filtered out than unrelated ones. In Figure 2, it can also 
be observed that 4 complexes (1EO8, 1L0Y, 1NCA, 
1QFU) have I_fact=0. This means that we filtered out all 
of the near-native structures (2, 1, 7, and 5 hits for the 
four complexes respectively). When we examined the 
number of conserved residue positions at the interface 
for these 4 complexes we found that there is a high 
number of conserved residue positions for antibody-
antigen systems 1EO8 and 1QFU, and a low number of 
conserved residues for non-antibody 1L0Y and 1NCA, 
contrary to most of the complexes investigated.   

       The global rank (see next section) for these 4 failed 
complexes (1EO8, 1L0Y, 1NCA, 1QFU) and two of the 
complexes (1FSS, 1MAH) without improvements are 
also given in Table 1 without using filter I. It is observed 
that except for 1L0Y, the I_fact values of the rest 5 
complexes are greater than 1.0 and the lower RMSD 
models are still in the subset.  1L0Y only has one hit (see 
Table 3) and is filtered out by filter II, but other lower 
RMSD models are still in the subset. For 1IGC, since 
there are not enough homologous sequences from the 
database, we couldn’t get the conserved residue position 
information. The result listed in Table 1 is obtained by 
just using filter II. Its improvement (I_fact) is still less 
than 1.0 since there are lower RMSD models filtered out.  

3.3 The efficiency of global-ranking   

The free energy of binding would in principle suffice 
to determine the native structure from a large set of 
complexes. Unfortunately, the free energy we calculated 
does not rank near native structures at the top of the list. 
This could be the result of inaccuracies in the potential 
force fields used for calculating enthalpic terms or in the 
empirical, entropic terms. Conformational changes upon 
binding whether local or global can also result in 
significant changes in the free energy of binding. As a 
result we have to resort to empirical descriptors, and 
since none can individually predict near-native structures 
with great accuracy, we decided to combine multiple 
descriptors in a global ranking scheme. 

Empirical rankings based on more than one 
descriptor have been attempted before: in ZDOCK (Chen 
et al. 2003a) shape-complementarity, electrostatics and 
desolvation energies were combined to get a final target 
function, and AutoDock (Morris et al. 1998) involved 
more energy  terms into the score function. A major 
bottleneck for composite, global scoring functions is that 
the weights for different quantities are hard to determine.  
As stated in section 2.5, we derived a global ranking 
function by re-normalizing the rank of each employed 
descriptor (eq.(6)). From our calculations, we obtained 6 
quantities: shape complementarity, pair-potential, total 

internal energy from CHARMM minimization, binding 
free energy, desolvation energy, and conserved residue 
indices. From the correlation coeficients calculations we 
found that the pair potential descriptor has a significant 
correlation coeficient value (>0.10) for 22 complexes, 
that the desolvation energy has significant positive 
correlation in 13 complexes, that the conserved residue 
descriptor has significant correlation in 10 complexes, 
that shape complementarity values correlate well with 
RMSD in 3 complexes, and that binding free energy has 
significant correlation coefficient value in 3 complexes. 
In some complexes there are more than one descriptors 
with significant correlation coefficient values. Using the 
relative values of correlation coefficients we have 
derived weights 1, 1, 2, 4, and 5 for shape-
complementarity, binding free energy, conservation 
index, desolvation energy and pair-potential energy 
respectively. 

Using equation (6) and these weights we obtained a 
new global rank for each model complex. The rank of the 
LRMSD structure for each complex is also listed in 
Table 1 (G_rank). From it, we can see that in most of the 
model complexes the near native complexes have lower 
ranks. But in some cases, with higher RMSD have lower 
ranks (false positive).  

In Table 1, we also give the number of hits (E_hits) 
within the first 100 ranks. For 22 complexes, application 
of the global ranking resulted in no hits in the top 100 
ranked structures. We should note that for five of these 
there were no hits to begin with, because FTDock did not 
generate any. 

 For the rest 38 complexes, application of the global 
ranking improves substantially the predictive ability. 
Specifically, we calculate the improvement over random 
(IOR) for these 38 complexes 
(IOR=(E_hits/100)/(Hits/NRC)), where NRC is the 
number of complexes after filtering, and we find 
substantial IOR values. The average calculated IOR for 
these 38 complexes is 11.18. Even when the 17 
complexes with IOR=0 are included in the average 
calculation, the average IOR for the 55 complexes that 
FTDock generated hits is 7.72. 

 4.  Concluding remarks 

In this work we have demonstrated the usefulness of 
conserved residue position information in identifying 
possible near-native complex model structures from 
docking solutions. We have used this information to 
develop two filters, reducing the number of docked 
model structures by 55% to 88% depending on the 
complex, while keeping near-native complexes in the 
remaining subset. We applied our method to a benchmark 
set of 59 complexes. There are 11 complexes for which 
we didn’t find enough homolog sequence information. 
Thus, we could not apply our filter at present. Only for 4 
out of the rest complexes our filter failed to retain the 
near-native structures, and for another 3 out of 60 
complexes (the 59 benchmark and the FIN bound-bound 
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calculation) our filter did poorly compaired to FTDock  
results. After filtering, we minimized the side-chain 
structure of the remaining model structures, and we 
calculated the binding free energy and desolvation 
energy. We developed a ranking scheme by 
renormalizing and weighting a combination of the ranks 
based on conservation position information, shape 
complementarity, desolvation energy, pair potential and 

binding free energy. Excluding the five complexes for 
which FTDock did not generate any hits (with 
RMSD<4.5Å), the average improvement over random 
for the top 100 ranked structures is 7.72. For 17 
complexes IOR=0, but for the majority (38 complexes) 
we observed significant improvements in predictive 
ability, in terms of predicting near-native structures in the 
highest-ranked 100 structures.  

 
Table 1.  The number of complexes (NRC) after applying filters. G_rank: Sorting global score calculated from equation (6).  
I_fact: improvement factor by our filter. E_hits: Number of hits within the first 100 ranks. IOR: Improvement over random. 
The numbers in italic are obtained by performing only filter II. 

Complex 
 

NRC 
 

LRMS(A) 
/(G_rank) 

Hits 
/(E_hits) 

I_fact 
 

IOR 
 

Complex 

 
NRC 

 
LRMSD(A)
/(G_rank) 

Hits 
/(E_hits) 

I_fact 
 

IOR 
 

1A0O 2721 2.62(31) 12(4) 3.39 9.07 1KXV 3901 1.69(139) 9(0) 1.44 0 

1ACB 2485 0.31(89) 21(15) 2.91 17.75 
   1L0Y 
 

3004 
2799 

4.87 
4.87(1587) 

0 
0(0) 

0 
0 

 
0 

1AHW 2875 3.37(316) 5(0) 1.93 0 
1MAH 

 
3258 
2754 

3.31 
1.11(653) 

2 
20(2) 

0.13 
1.58 

 
2.75 

1ATN 4211 0.40(7) 9(7) 1.94 32.75 1MEL 2579 1.26(7) 6(3) 2.33 12.90 
1AVW 3998 4.69(2102) 0(0) 1 0 1MLC 2544 1.39(58) 9(3) 3.54 8.48 

1AVZ 2210 2.64(1686) 21(0) 3.80 0 
1NCA 

 
1637 
2778 

4.95 
0.41(600) 

0 
4(0) 

0 
2.06 

 
0 

1BQL 2615 5.30(570) 0(0) 1 0 1NMB 2136 0.77(148) 3(0) 2.34 0 
1BRC 2825 1.29(12) 12(6) 2.02 14.1 1PPE 2695 0.56(5) 394(74) 2.22 5.00 

1BRS 2785 1.66(13) 29(9) 2.89 8.64 
1QFU 

 
1439 
2781 

5.33 
0.70(190) 

0 
5(3) 

0 
3.60 

 
16.6 

1BTH 3110 3.70(693) 8(0) 1.84 0 1SPB 2837 0.95(1) 33(9) 2.91 7.73 
1BVK 2322 3.03(512) 13(1) 4.31 1.79 1STF 2803 0.63(2) 15(10) 3.57 18.67 
1CGI 2753 1.58(84) 70(25) 2.86 9.83 1TAB 3591 0.72(1318) 49(0) 1.71 0 
1CHO 3504 2.23(21) 44(19) 2.09 15.1 1TGS 3046 1.64(54) 22(11) 2.89 15.23 
1CSE 2981 0.92(304) 43(5) 2.58 3.47 1UDI 2824 2.34(18) 24(3) 3.54 3.53 
1DFJ 2894 3.24(997) 1(0) 3.46 0 1UGH 2785 3.80(771) 5(1) 2.56 5.57 
1DQJ 3428 2.95(1306) 12(0) 2.69 0 1WEJ 2433 2.74(451) 10(0) 4.11 0 
1EFU 4205 5.71(898) 0(0) 1 0 1WQ1 2833 2.39(510) 11(0) 2.99 0 
1EO8 

 
1395 
2812 

4.92 
3.01(134) 

0 
2(1) 

0 
3.56 

 
14.06 2BTF 3909 1.61(59) 5(4) 2.56 31.27 

1FBI 2880 2.68(1381) 14(0) 2.86 0 2JEL 1955 2.86(40) 8(3) 5.12 7.33 
1FIN 4072 5.94(389) 0(0) 1 0 2KAI 2801 1.51(154) 36(4) 1.69 3.11 
1FQ1 2810 3.05(379) 2(0) 1.19 0 2MTA 2676 2.87(4) 10(1) 2.49 2.68 
1FSS 

 
2694 
2697 

3.80 
1.81(1086) 

7 
42(2) 

0.37 
2.26 

 
1.28 2PCC 3410 2.28(500) 31(2) 2.33 2.20 

1GLA 3846 2.75(34) 5(3) 2.60 23.18 2PTC 2914 1.42(71) 42(10) 2.44 6.94 
1GOT 3245 5.80(222) 0(0) 1 0 2SIC 3690 1.86(1) 13(11) 2.20 31.22 
1IAI 2274 3.27(29) 4(1) 3.52 5.68 2SNI 2928 2.52(268) 18(5) 2.67 8.13 
1IGC 2628 1.84(2552) 11(0) 0.46 0 2TEC 2943 0.45(139) 52(11) 3.27 6.22 
1JHL 4404 0.74(1414) 19(0) 2.27 0 2VIR 2035 0.80(362) 5(2) 4.91 8.14 
1KKL 3076 3.32(2569) 4(0) 2.60 0 3HHR 3125 4.50(889) 1(0) 3.20 0 
1KXQ 3476 0.46(1) 8(3) 2.56 13.04 4HTC 2813 1.46(1) 11(6) 3.56 15.34 
1KXT 3794 0.45(265) 8(0) 1.32 0 1FIN_BB 4035 0.41(2) 10(9) 2.48 36.32 
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